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The limit Z3 = 0 is studied in the Zachariasen model using dispersion theory techniques. The connection 
between bound states and elementary particles is demonstrated in this limit and it is shown how Castillejo-
Dalitz-Dyson ambiguities are removed. 

I. INTRODUCTION 

THERE has recently been a great deal of interest 
in studying field theories in the limit of vanishing 

renormalization constants.1"3 Various authors have 
speculated that in this limit an "elementary particle" 
can be regarded as a bound state. Vaughn, Aaron, and 
Amado4 have discussed the equivalence of the Lee 
model and potential theory in this limit. Rockmore, 
and Dowker and Paton5 considered this problem 
in the context of the unsubtracted bootstrap model. 
A convenient model for studying this limit is that 
proposed by Zachariasen, in which the wave function 
renormalization can be determined explicitly and 
is finite. A special case of this theory in which there is 
no contact interaction has been studied by Acharya6 

and Dowker.7 Dowker8 has also discussed a more 
general case restricting himself to two dimensions and 
using perturbation theory. 

f Supported by the U. S. Atomic Energy Commission. 
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Since the limit Z3=0 is a highly singular one, it is 
advantageous to have explicit solutions for the quan­
tities of interest and for this reason we shall confine 
our attention to the Zachariasen model.9 The com­
parative simplicity of this theory allows us to see 
clearly the nature of the difficulties. Our work differs 
from that of Refs. 6, 7, and 8 in that we consider a 
wider class of solutions and obtain all our results in 
terms of finite physical quantities using dispersion 
theory techniques. 

Our results may also be obtained from renormalized 
perturbation theory although we feel that results stated 
in terms of unrenormalized coupling constants, masses, 
etc., tend to be physically misleading. 

In Sec. II we present a new dispersion theoretic 
method for solving the Zachariasen model based on the 
properties of the vertex function, rather than the de­
nominator function. In Sec. II we exhibit and discuss 
several apparently different scattering solutions. We 
also consider the Z3=0 limit of these solutions, and 
show their equivalence to a bound-state theory. Finally, 
in an Appendix we discuss a solution which clearly 
indicates the singular nature of the Z3=0 limit. 

II. PROPERTIES OF THE VERTEX 
AND CALCULATION OF Z3 

The Zachariasen model deals with the interaction of 
a scalar boson B (with a distinct antiparticle B) and 

9 F . Zachariasen, Phys. Rev. 121, 1851 (1961). 
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possibly another scalar boson A. We will follow the 
notation of Ref. 9. 

The BB scattering amplitude T(s) satisfies the fol­
lowing dispersion relation 

A similar argument shows 

T(s) = -

where 
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where the last line follows from Eqs. (5) and (8). Hence, 
we may write a dispersion relation for T/Y to give 

M and fj, are the physical masses of the B and A par­
ticles, respectively (ji<2M). If the physical A particle 
does not exist, then the pole term in (1) is not present. 

When the A particle is present, the BBA form factor 
F(s), the BBA vertex Y(s), and the A particle pro­
pagator A(s)12 are given by 
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where a is a subtraction constant. Comparing this with 
the dispersion relation for F [Eq. (3)2 we find 

r / r = F / ( j - / * » ) + a , 

where the constant a is given by 
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and finally 
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A(s)V(s) = F(s). 
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We now proceed to the calculation of various quantities 
of physical interest by a method that avoids many of 
the difficulties due to Castillejo-Dalitz-Dyson (CDD) 
ambiguities. We shall confine our attention to the case 
where the physical A particle exists and the form factor 
has certain asymptotic properties, which we shall 
specify later. 

Our method is based on a consideration of the 
analytic properties of the vertex function Y (s) given by 
Eq. (5). From this equation, we see that Y(s) is regular 
in the cut s plane, and we assume Y has no poles or 
zeros. The discontinuity of Y(s) across the cut may be 
found rather indirectly as follows: 

F p(s)\F(s)\2 

Im- = Im(s-iJL2)A(s)= . (6) 

r s-fx2 

Some trivial manipulation gives 

F Y 0 ) ImF 0 ) - F (s) ImP (s) 

We assumed that T/Y satisfied a once subtracted dis­
persion relation. I t is easy to see that the only effect of 
further subtractions is to replace a by a polynomial in 
(s—fji2) in Eq. (12). For our present purposes the actual 
value of a is unimportant. We may remark, however, 
that the arbitrariness in a corresponds to the CDD 
ambiguity in the usual N/D method of solving the 
model. 

Substituting this value for T in Eq. (8) and using 
Eq. (5) gives 

Im(l/Y) = ap(s). (13) 
Hence 
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and we can write the two dispersion relations 
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Comparing these two and using Eq. (3) gives 
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Now the wave function renormalization constant of 
particle A is given by6 

Z,= l-
P(s')\T(s>)\ 

irJ an1 (s'—fJ?)2 
-ds'. (17) 
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10 L. Castillejo, R. H. Dalitz, and F. S. Dyson, Phys. Rev. 101 
453 (1956). 

11 M. Gell-Mann and F. Zachariasen, Phys. Rev. 124,953 (1961). 
12 S. D. Drell and F, Zachariasen, Phys. Rev. 119, 463 (1960). 

From Eq. (15) we see that the integral in this expression 
is equal to 

g2 fp{sf)dsr 

V\ -[r(M} J ( \ - - fp{s)ds 

a\ds/s^ a ds\Y/s^ TTJ (S'—}JL2)2 
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when the last equality follows from Eq. (16). Hence 

g2 r00 ds' 
Zz=l P(S') 

7 r J 4 M 2 (Sf — fJ2)2 
(18) 

and is independent of a. 
A sufficient condition for the validity of the once 

subtracted dispersion relations (15) and (16) is that 
both \T(s)\ and l/\T(s)\ should be bounded by 
\s\p(p<l) at infinity. This condition is satisfied by all 
the solutions we discuss in the next section. A case 
where it is not satisfied is discussed in the Appendix. 

Equation (16) is an explicit expression for T(s) and 
we may now calculate all quantities of physical interest 
merely by evaluating known integrals since6 

O - M 2 ) A (5)]-i 

= 1-
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(19) 

F(s) is given by (5) and T(s) by (12). I t is not necessary 
to solve any integral equations and no further ambi­
guities arise. 

III. PARTICULAR SOLUTIONS OF THE 
ZACHARIASEN MODEL 

We now proceed to a discussion of particular solu­
tions for the scattering amplitude T(s). I t is more 
convenient for our purpose to use the well known N/D 
solutions9'11 of Eq. (1) rather than using Eq. (12) and 
we shall just point out the connection. For the case 
when the physical A particle exists two solutions of 

(1) are given by: 

(1) Trilinear theory 
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I t is assumed that g2 and X are chosen so that the only 
poles of T(s) are those given by (l).9 These solutions 
may^be obtained from (12) by choosing a = 0 and 
a= (\/gZs), respectively. 

Let us now consider the possibility of CDD poles in 
the trilinear theory. That is, we replace D0

a)(s) by 
Z>(1)(s) given by 

DV (s) = ZV1} (s)+ , (24) 
(s1-fj

2)(s1—s) 

with c> 0. Some simple algebra shows that 

where 
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The choice A<0, s{>n2 insures that D(1)(s) has no 
zeros on the physical sheet. 

Hence the trilinear theory with a CDD pole may be 
written in the same form as the combined theory if we 
choose c such that A vanishes. From (27) and (18) 
this means 

c=-g2Z3/\'. (28) 

In the following we shall assume that (28) is satisfied 
and shall defer consideration of the general case to the 
Appendix. By a suitable choice of si it is now always 
possible to make T<U(s) = T0™(s) [i.e., X = V ] . 

In order to take the Z 3 = 0 limit of any function we 
must ensure that all the Z3 dependence is exhibited 

explicitly [thus, for example, the Z 3 = 0 limit of Eq. (17) 
is not obtained merely by putting the left-hand side 
equal to zero since T(s) itself depends on Z{\. This 
condition is satisfied by all the above forms for T(s) 
and no difficulty arises in taking the limit. Upon doing 
this [and using (28)] we obtain 

r0w(j) = r(1)W=^o(1)W 

- 1 
S — fJl? ds' 

p(s') 
4M2 (s'—p2)(s' — s-ie)J 

(29) 

We should stress the fact that g2 is no longer arbitrary 
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but is given by 

— > - / —~. (30) 
g2 irJ iM* (s'—fx2)2 

Another solution for T(s) is given by11 

(J) <p4 theory 

where 

^ 0
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(31) 

^ ' , (32) 
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where 7y3)C?\) = X defines the real constant X. Without 
any real loss of generality we take s\= 0. ZV3)C0 n a s n o 

zeros if — | < X < 0 , one zero for 0<s<4M2 if X<—| 
(i.e., a bound state), and a zero for s<0 if X>0 (i.e., 
a ghost). 

Let us first consider X< — §. If (31) is a solution of 
(1) and if the zero of ZV3) (s) occurs at /z2, then we have 

M2 r Ms' 
0 = 1 + - / P ( / ) . 
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Hence, the <p* theory with a bound state is identical to 
the trilinear and combined theories with Z3=0. 

If X> —|, we can introduce the A particle as a CDD 
pole by replacing ZV3)C0 by Z>(3)(s) given by 

R s 
D<v(s) = D0™(s)+ , (36) 

(s—St) sz 

where R>Q. Gell-Mann and Zachariasen have shown 
that in this case11 
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Hence, the <p4 theory with a CDD pole can be cast into 
the same form as the combined theory. It is not, how­
ever, always possible to choose the parameters so that 
the two are numerically identical. If —J<X<0 and 
X"<0, which insures that no ghosts appear, and R and 
Sz are chosen so that ju"2—/x2 then it follows from (38) 
and (39) that 

ds' 1 If00 ds 

Z"2 JAM2 (S'~ 

IV3 V ) 
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Hence, g"2 may be made equal to g2 only if g2 is suffi­
ciently small. This precludes taking the Z3=0 limit 
£as is obvious from (41)] since g2 has its maximum 
value for Z3= 0. 

We can of course take the limit s3 —*°° but this is 
not the same as setting Z3=0, since in order to satisfy 
(38) we must also let R—>oo in such a way that R/s±2 

remains finite. In this limit, Eq. (41) is satisfied with 
the equality sign holding and we do not get an expres­
sion for g2 in terms of ju2. 

It is possible to obtain a well defined Z3=0 limit of 
the <pA theory with a ghost but this is of little physical 
interest and we shall not pursue it further. 

IV. CONCLUSIONS 

We have discussed several solutions of the Zachariasen 
model and their relationships to each other. In par­
ticular we have been able to discuss these relationships 
in the limit Z3—0. We feel that it is important that 
this was achieved by using dispersion relations through­
out so that no reliance was placed on perturbation 
theory. 

All of the basic solutions for the scattering amplitude 
T(s) were subject to modification by the usual CDD 
terms. We have fixed the residue and positions of these 
poles by requiring that the modified theory can be 
completely equivalent to the combined theory without 
a CDD pole. This requirement gave the residue of the 
pole to be proportional to the wave function renor-
malization constant of the A particle. 

The limit Z3= 0 determines the coupling constant g2 

in terms of M2- It is worth pointing out that Eq. (18) 
with Z3=0 is the condition that an unsubtracted dis­
persion relation hold for Doa)(s). Furthermore, in this 
limit the CDD ambiguity vanishes and there is only 
one solution of the dispersion relation, namely that 
given by (29). This solution may be interpreted either 
as a bound-state theory of the <pA type or as the Z3=0 
limit of the trilinear or combined theories. 

Finally, we may point out that all of the results 
given here agree with renormalized perturbation theory. 
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There are difficulties in the interpretation of perturba­
tion theory, however, since for consistency it is neces­
sary to assume the bare coupling constants go and Xo 
are always zero. 
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APPENDIX 

In this Appendix we consider the case of a CDD pole 
in the pure trilinear theory with a residue that does not 
satisfy Eq. (28). The scattering amplitude may be 
written in the form 

r(*) = 
with 

Z)'(s) = l + ( 5 - V ) 

X'-
S—n. 

/D'(s); (Al) 

x ; P(s')(\'+^~) 
' « , . V s'-i*/(.s'-ltW-s-ie) 

I t is convenient to introduce the abbreviation 

P(s') 
I(s) = 

Then 
4M2 (s' — H^is' — S—ii) 

-ds'. (A2) 

£ ' ( * ) < x ' ( * - M 2 ) + f ] [ / ( * ) + ( W ) - / 0 u 2 ) ] 
+ (A"/g2)2C(*-M2). (A3) 

For (Al) to be a solution of the dispersion relation 
for T, we require that Df(s) should have no zeros on 
the physical sheet. The condition for this is 

0<-\"C/?<1-?IQJ?). (A4) 

With this form of D', we find l/Y(s)*=Q(s) as s—><*>, 
and the method we used in Sec. I I to find Zz fails, 
though a modification of it still works. We may find Z3 

by noting that the solutions given by Zachariasen for 
the combined theory hold in this case as well, with his 
D(s) replaced by D'(s). In particular 

(s-M*)A(*) = l 1+-(s-V) 
ff2 

X 
1 

•D'(s) fZz 3 J 
(A5) 

[compare Eq. (45) of Ref. 9J. 
Hence A(s) will have pole at s^=ixL—g2/\", unless 

1 
(j,-A.») = 0 

or 

D'(s3) fZt 

Z%=-V'CI£. 

(A6) 

[We may remark in passing that the same method could 
have been used for the combined theory, and would 
have given Eq. (18) again.] 

Hence for this solution Z3 is arbitrary apart from the 
restriction imposed by Eq. (A4), and at first sight the 
condition Z 3 = 0 gives no restriction on g2. However, 
the form of the propagator given in Eq. (A5) is valid 
only if C does not vanish. If C— 0, we must go back to 
the expression for T given by (Al) and (A2), and after 
a little manipulation we find 

n*)^v[(*-MW3)(*)], (A7) 

and hence Z 3 = 1—g2/(/*2) as before. 
I t is not known whether the solution with A 9*0 has 

any simple interpretation in terms of perturbation 
theory. This example does indicate, however, the highly 
singular nature of the limit Z3 —> 0. 


